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The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease
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Abstract

Nonalcoholic fatty liver disease (NAFLD) currently affects 20%–30% of adults and 10% of children in industrialized countries, and its prevalence is increasing
worldwide. Although NAFLD is a benign form of liver dysfunction, it can proceed to a more serious condition, nonalcoholic steatohepatitis (NASH), which may
lead to liver cirrhosis and hepatocellular carcinoma. NAFLD is accompanied by obesity, metabolic syndrome and diabetes mellitus, and evidence suggests that
fructose, a major caloric sweetener in the diet, plays a significant role in its pathogenesis. Inflammatory progression to NASH is proposed to occur by a two-hit
process. The first “hit” is hepatic fat accumulation owing to increased hepatic de novo lipogenesis, inhibition of fatty acid beta oxidation, impaired triglyceride
clearance and decreased very-low-density lipoprotein export. The mechanisms of the second “hit” are still largely unknown, but recent studies suggest several
possibilities, including inflammation caused by oxidative stress associated with lipid peroxidation, cytokine activation, nitric oxide and reactive oxygen species,
and endogenous toxins of fructose metabolites.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

High-fructose corn syrup (HFCS) is the major source of caloric
sweeteners found in soft drinks, juice beverages, canned fruits, jams,
jellies, breakfast cereals and baked goods. In 1970, HFCS represented
b1% of all caloric sweeteners available for consumption in the United
States. However, this percentage jumped rapidly in the 1980s, and
HFCS represented 42% of all caloric sweeteners by 2000 [1]. HFCS
contains 55%–90% fructose and thus constitutes a major source of
dietary fructose. With the rise in HFCS consumption, obesity in the
United States has increased to epidemic levels over the past three
decades [2]. Many researchers have investigated the impact of
fructose consumption on weight, lipid profiles and glucose metabo-
lism in both rats and humans, and most of these researchers have
agreed that a fructose-enriched diet contributes to the risks for
obesity, metabolic syndrome and diabetes mellitus [3,4]. For example,
we have previously shown that long-term consumption of sucrose
(a disaccharide of glucose and fructose) causes weight gain,
hyperglycemia, glucose intolerance and hyperinsulinemia in rats
[5]. Stanhope and Havel reported similar findings in humans: fructose
consumption at 25% of energy intake for 10 weeks resulted in
increased visceral adiposity, lipid dysregulation and insulin resistance
[6]. Some studies have observed these effects only with the
consumption of fructose-sweetened beverages, and not glucose-
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sweetened ones [7–9], more often in men than in women [9] and
more often in obese individuals than in nonobese individuals [7].

Nonalcoholic fatty liver disease (NAFLD) is the most common
hepatic manifestation of obesity, affecting ∼20%–30% of adults [10].
However, a study from Israel demonstrated that soft drink consump-
tion was associated with NAFLD independent of metabolic syndrome
[11] or in the absence of traditional risk factors, including obesity,
diabetes or hyperlipidemia [12]. In fact, an increasing body of
evidence indicates that fructose in the diet itself causes NAFLD.
Previous studies in rodents have demonstrated various histological
alterations of liver tissue after fructose consumption; these include
focal inflammation in the periportal regions [13], macrovesicular
steatosis in the periportal area [14], and macrovesicular and
microvesicular steatosis [15,16]. We have previously reported the
predominance of lobular inflammation over portal inflammation in
rats fed a high-fructose diet (70%) for 5 weeks, which is consistent
with findings in human nonalcoholic steatohepatitis (NASH) [17].
Several large-scale epidemiological studies have also suggested a
positive relationship between fructose consumption and NAFLD [18–
20]. Furthermore, among these, a study with a sample size of 427
conducted by Abdelmalek et al. demonstrated that daily fructose
consumption was associated with higher fibrosis stage in biopsy-
proven NAFLD, after controlling for age, gender, body mass index and
total caloric intake [20].

Although NAFLD is a benign form of liver dysfunction, it can
progress to the more serious disease NASH, which is a necroinflam-
matory condition affecting 2%–3%of adults [10]. NASHmayprogress to
cirrhosis with subsequent liver failure and increases the risk for
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hepatocellular carcinoma. Given the evidence that a fructose-enriched
diet may cause NAFLD, early intervention is needed to prevent the
start of this disease progression. This review aims to clarify the role of
fructose in mechanisms of NAFLD in light of recent findings in
fructose-feeding studies in both human and animal models.

2. The “two-hit” theory of NAFLD: the first hit: hepatic
lipid accumulation

According to the two-hit theory originally proposed by Day and
James in 1998 [21], the inflammatory progression to NASH occurs
with two sequential hits, with the first being hepatic steatosis and the
second being hepatic inflammation. Hepatic steatosis is potentially
reversible and does not necessarily lead to permanent hepatic injury.
However, it is postulated to sensitize the liver to the second hit.
Although less common, the second hit comprises more virulent
inflammation associated with oxidative stress or endogenous toxins
of fructose metabolites.

Fat accumulates within hepatocytes when the cellular input of
fatty acids through either uptake or synthesis exceeds fatty acid
output via degradation or export. Increased hepatocytic fatty acid
input associated with fructose consumption is attributable to
increased hepatic de novo lipogenesis, inhibition of fatty acid beta
oxidation, impaired triglyceride (TG) clearance and reduced very-
low-density lipoprotein (VLDL) export.

Fructose passes passively from the intestinal lumen to the blood
via glucose transporter 5 (GLUT5), which is the sole transporter
specific for fructose, with no ability to transport glucose or galactose
[22]. From the portal blood, fructose is efficiently moved across
hepatic plasma membranes by GLUT2 or 5. In the liver, fructose is
converted to fructose-1-phosphate by fructokinase and further
converted by aldolase B into the triose phosphates dihydroxyacetone
phosphate and glyceraldehyde 3-phosphate, which can enter the
glycolytic pathway. In the case of glucose, its metabolism is regulated
at the point where glucose carbon enters the glycolytic pathway:
citrate and adenosine-5′-triphosphate (ATP) provide feedback inhi-
bition of phosphofructokinase, reducing the conversion of fructose 6-
phosphate to fructose 1,6-bisphosphate (Fig. 1). However, because
fructose bypasses this control step, it serves as an unregulated source
of both glycerol 3-phosphate and acetyl-CoA, leading to enhanced
lipogenesis [23]. This process is further enhanced by synergy with
insulin resistance and/or obesity [24,25].

After fructose intake, triose phosphate is the main lipogenic
precursor; it can be subsequently converted into pyruvate by
pyruvate dehydrogenase and then further oxidized into CO2 and
H2O in the hepatic mitochondrial tricarboxylic acid cycle [26]. When
liver mitochondria cannot metabolize excess of acetyl-CoA substrate,
the extra substrate exits the mitochondria and enters the cytosol in
the form of citrate, leading to de novo lipogenesis [26]. De novo
lipogenesis is mediated by two important proteins, carbohydrate
response element binding protein (ChREBP) and sterol regulatory
element binding protein 1c (SREBP-1c) [27,28]. Fructose administra-
tion induces the activation of ChREBP and acts in synergy with SREBP
to increase the expression of lipogenic genes, including those
encoding acetyl CoA carboxylase (ACC), fatty acid synthase (FAS)
and stearoyl coenzyme-A desaturase-1 (SCD-1) [29]. ChREBP is
localized in the cytosol, but it can be imported into the nucleus by
protein phosphatase 2A (PP2A), which is promoted by xylulose
5-phosphate (Xu-5-P), an intermediate metabolite of the pentose
phosphate pathway [30]. Thus, PP2A in nucleus activates ChREBP [29].
SREBP-1c is responsible for the insulin-mediated induction of
lipogenic enzymes in the liver [27] or is expressed independently of
insulin in fructose metabolism [31]. Recent studies have shown that
peroxisome proliferator-activated receptor γ coactivator 1β (PCG-1β)
[32] and a binding of scaffold attachment factor B1 (SAFB1) to an
X-chromosome-linked RNA binding motif protein (RBMX) [33,34]
may activate SREBP-1c.

Hepatic de novo lipogenesis is accelerated by the direct effect of
fatty acid synthesis and indirect effect of increased levels of
malonyl-CoA, which reduce the entry of fatty acids into the
mitochondria by inhibiting liver carnitine palmitoyltransferase I
(L-CPTI) [35]. This rate-limiting enzyme of beta oxidation regulates
the transfer of long-chain acyl-CoA from the cytosol into the
mitochondria, producing a shift from an oxidative to a reesterifica-
tion pathway [36].

Another importantmolecule associatedwith fructose regulation of
lipids in the liver is peroxisome proliferator-activated receptor alpha
(PPARα), which belongs to the superfamily of ligand-activated
nuclear hormone receptors. Fructose-1-phosphate reduces hepatic
PPARα mRNA levels, and the decrease in PPARα reduces the
expression of fatty acid oxidation enzymes [37–39]. A study group
in Spain has suggested that the PPARα alteration may be induced by
the impairment of hepatic transduction of the leptin signal [38–40].
Their studies have revealed that in fructose-fed rats, but not in
glucose-fed rats, hyperleptinemia was induced andwas caused by the
impairment of leptin signal transduction mediated by Janus-activated
kinase-2 (JAK-2) and the mitogen-activated protein kinase (MAPK)
pathway [38–40]. PP2A expression, which is greatly increased by Xu-
5-P, dephosphorylates Ser/Thr residues in JAK-2 and the MAPK
pathway, and these in turn inhibit Akt and 5′ adenosine monopho-
sphate-activated protein kinase (AMPK) activities, respectively. The
subsequent increases in the activities of the unphosphorylated and
active forms of the forkhead box O1 nuclear factor transrepresses
PPARα activity, thus inducing hepatic lipogenesis [40]. The over-
stimulation of the only functional leptin signaling pathway in the liver
finally induces enough suppressor of cytokine signaling-3 protein to
further block leptin signaling mediated by the JAK-2 and MAPK
pathways. This blockade establishes a self-perpetuating loop that
maintains and enhances the metabolic disturbances produced by
fructose [40].

After fatty acids are converted into TGs by esterification, TGs can be
exported from the liver in VLDL particles, which are formed by the
incorporation of TGs into apolipoprotein B (apoB). The degradation of
apoB is dramatically reduced when the supply of fatty acids (and TG
biosynthesis) is increased [41]; thus, the apoB level is increased in
fructose metabolism [42]. Tsai et al. have suggested that hepatic
synthesis and secretion of apoB are mediated by the inflammatory IκB
kinase/nuclear factor-κB (NF-κB) signaling cascade [43]. The decrease
in apoB degradation results in the accumulation of apoB in the hepatic
endoplasmic reticulum (ER), which induces ER stress [44]. Su et al.
have suggested that ER stress leads to the perturbed activation of
glycogen synthase kinase 3 and glycogen synthase via the activation of
c-Jun N-terminal kinase (JNK) and suppression of the insulin signaling
cascade, to induce hepatic insulin resistance [44]. A study in ob/ob
mice showed that ER stress also promotes SREBP-1c activation, thus
contributing to de novo lipogenesis [45]. Indeed, the chaperone
glucose-regulated protein 78, an ER stress reductionmarker, alleviates
hepatic TG levels and improves insulin sensitivity [45].

Insulin action in the liver exhibits many similarities to insulin
action in muscle. In the liver, insulin activates insulin receptor
kinase, which phosphorylates insulin receptor substrate-1 (IRS-1)
and IRS-2, leading to the activation of phosphatidylinositol 3-kinase
(PI3K) and ultimately Akt2 [46]. At this point, Akt2 activation
promotes glycogen synthesis and inhibits gluconeogenesis. Thus,
insulin resistance leads to increased hepatic glucose production,
increased fasting glucose and insulin concentrations, and decreased
glucose tolerance and apoB secretion [47,48]. Several mechanisms
underlying fructose impairment of the insulin signaling pathway
have been proposed [49–54]. For example, Wei et al. have
demonstrated that fructose delivery increased JNK activity via the



Fig. 1. Fructose metabolism in liver. Fructose is converted to fructose-1-phosphate by fructokinase and further metabolized into triose phosphate, entering the glycolytic pathway and
serving as an unregulated source of glycerol-3-phosphate and acetyl-CoA, leading to enhanced de novo lipogenesis. De novo lipogenesis is activated through two gene expression
proteins, ChREBP and SREBP-1c, which increase the expression of ACC, FAS and SCD-1. Finally, fatty acids are converted into TGs by esterification, and VLDL particles are formed by the
incorporation of TGs into apoB. Fructose induces insulin resistance: fructose-1-phosphate increases serine phosphorylation of IRS-1 and reduces tyrosine phosphorylation of IRS-1,
impairing the following PI3K/Akt signaling pathway. Insulin resistance leads to increased hepatic glucose production, increased fasting glucose and insulin concentrations, and
decreased glucose tolerance and apoB secretion. Fructose also induces hyperuricemia and causes hypertension through the inhibition of endothelial NO synthesis. Abbreviation: ATP,
adenosine-5′-triphosphate; ADP, 5′ adenosine diphosphate; fructose-1-p, fructose-1-phosphate; DHAP, dihydroxyacetone phosphate; GA3p, glyceraldehydes-3-phosphate; Xu-5-P,
xylulose 5-P; PP2A, a protein phosphatase 2A; TCA, tricarboxylic acid; ChREBP, carbohydrate response element binding protein; SREBP-1c, sterol regulatory element binding protein 1c;
PCG-1β, peroxisome proliferator-activated receptor γ coactivator 1β; SAFB1, scaffold attachment factor B1; RBMX, an X-chromosome-linked RNA binding motif protein; ACL, ATP-
citrate lyase; ACC, acetyl-CoA carboxylase; FAS, fatty acid synthase; SCD-1, stearoyl coenzyme-A desaturase-1; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; L-CPT1,
liver carnitine palmitoyltransferase I; apo B, apolipoprotein B-100; PKC, novel protein kinase C; PPARα, a peroxisome proliferator-activated receptor; MKK7,mitogen-activated protein
kinase kinase 7; pSer-IRS-1, serine phosphorylation of IRS-1; pThy-IRS-1, tyrosine phosphorylation of IRS-1; IRS-1, insulin receptor substrate-1; PI3K, phosphatidylinositol 3-kinase.
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regulation of mitogen-activated protein kinase kinase 7 and scaffold
proteins [50], increased serine phosphorylation of IRS-1 and reduced
tyrosine phosphorylation of IRS-1, thereby impairing the subsequent
PI3K/Akt signaling pathway [51]. In their review, Samuel et al. have
suggested that an increased intrahepatic level of diacylglycerol may
activate novel protein kinase C (PKC) [52], given the much higher
affinity of novel PKC for diacylglycerol compared with other PKC
family members [55]. The subsequent decrease in Tyr phosphory-
lation and/or increase in Ser phosphorylation of the insulin receptor
and IRS-1 reduces the activity of PI3K and Akt, resulting in insulin
resistance [52,53]. Indeed, the activation of novel PKC and Ser
phosphorylation of IRS-1 were shown to improve insulin resistance
in mice without PKC [56]. However, the kinases (i.e., JNK or IκB
kinase β) that activate novel PKCs remain unknown [52].

Fructose may induce hypertension [57] as well as cardiovascular
diseases [58] and metabolic syndrome [59,60]. These systemic
conditions are associated with endothelial dysfunction involving
uric acid inhibition of nitric oxide (NO) production by endothelial NO
synthase (eNOS) [59]. The initial step in fructose metabolism, the
phosphorylation of fructose to fructose-1-phosphate by fructokinase,
requires ATP. The phosphorylation of fructose in the liver causes
hepatic ATP depletion, and adenosine 5′-diphosphate is converted to
AMP. The fate of AMP is determined by the relative activities of two
competing enzymes, AMPK and xanthine dehydrogenase. When
AMPK is more active than xanthine dehydrogenase, AMP is recycled
to restore hepatic ATP content. When xanthine dehydrogenase is the
more active enzyme, AMP is converted to uric acid [20]. The recovery
from hepatic ATP depletion is severely impaired in patients with
obesity-related NASH [61].

3. The second “hit”: inflammatory progression to NASH

The second hit is proposed to be inflammation caused by oxidative
stress associated with lipid peroxidation, cytokine activation, NO,
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reactive oxygen species (ROS) and endogenous toxins of fructose
metabolites. The results of several studies in animals and humans
have suggested that elevated dietary fructose intake induces bacterial
overgrowth in the small intestine, accompanied by intestinal
permeability; this increases endotoxin levels in the portal vein and
contributes to the mechanism of NAFLD [62–64]. Although the
evidence is limited to mice, hepatic lipid accumulation in fructose-
fed mice was markedly reduced by antibiotics, suggesting that
endotoxins play a critical role [65].

Endotoxins induce the expression of the endotoxin receptor toll-
like receptor 4 (TLR-4) in the liver [62,66]. TLR-4 is a receptor for
Gram-negative bacterial cell wall components, including lipopoly-
saccharides [67]. Upon pathogen recognition, TLR signaling promptly
induces potent innate immune responses that signal through the
adaptor molecule myeloid differentiation factor 88 to activate NF-κB
[67–69], which in turn releases numerous proinflammatory media-
tors [70]. TLR facilitation of innate immune responses for the initial
host defense against microorganisms is important in the liver because
it is constantly exposed to microbial products from the enteric
microflora that are carried through the portal circulation [71]. A
normal liver can tolerate innate immune responses and does not
usually induce inflammation in the TLR signaling pathway [72].
However, in NAFLD patients, a breakdown of this tolerance may allow
the activation of an inappropriate immune response.

Although Kupffer cells are considered to be the primary cells in the
liver that respond to TLR signaling, recent studies have revealed that
TLR signaling occurs in hepatic nonimmune cell populations,
including hepatocytes, biliary epithelial cells, endothelial cells and
hepatic stellate cells [71]. The binding of lipopolysaccharides to TLR-4
in these cells induces lipid peroxidation and the production of
proinflammatory cytokines and ROS [68]. Kupffer and hepatic stellate
cells are involved in hepatic fibrosis, which is an important
histological finding in NASH, through the TLR-4 signaling pathway
[71,73]. The loss of TLR-4 and the destruction of Kupffer cells blunted
hepatic expression of tumor necrosis factor alpha (TNF-α) and
markers of fibrosis such as collagen α1 and transforming growth
factor β in a methionine/choline-deficient diet [66] (i.e., an animal
model for hepatosteatosis [74]).

Increased ROS formation has been repeatedly claimed as a major
contributor to a proposed second-hit mechanism of NAFLD. Previous
studies have investigated variousmarkers of ROS formation, including
4-hydroxynonenal adducts [65,68,75–77], inducible NOS (iNOS)
protein [68,77,78], malondialdehyde [79], thiobarbituric acid-reactive
substances [16,80], NO [16] and xanthine oxidase activity [16]. These
ROS markers were markedly elevated after fructose administration in
both rodents [16,65,68,75–77,79,80] and humans (i.e., malondialde-
hyde) [12]. Among these studies, two studies in rodents investigated
liver tissue histology; Bergheim et al. found a significantly increased
number of infiltrating neutrophils [65], and Armutcu et al. reported a
significant increase in macrovesicular steatosis [16]. Both of these
findings are compatible with NAFLD, but not NASH. Another source of
oxidative stress may be the overexpression of cytochrome P450 2EI
(CYP2EI), a prooxidant enzyme [81]. ROS generated by CYP2EI or
other sources may mediate the progression from steatosis to cell
death through 4-hydroxynonenal by JNK/c-Jun overactivation [82].

Among ROS indicators, NO is a pluripotent, gaseous-free radical
that possesses various physiological functions. It is produced from L-
arginine by NOS, a three-member family comprising eNOS, iNOS and
neuronal NOS [83]. In Section 2 of the present article, we discussed
the impact of uric acid on eNOS in vascular diseases. However,
compared with eNOS, iNOS produces much more NO [85], and iNOS
has been found in hepatocytes, hepatic stellate cells and cholangio-
cytes [84]. NO may potentiate cytotoxicity by its reaction with
superoxide anion to form peroxynitrite, which induces mitochondrial
permeability, causing protein nitration and tissue injury leading to
apoptosis [85]. The free radicals generated during the oxidation
process by xanthine oxidase induce lipid peroxidation, resulting in
premature cell death [86]. Recent studies conducted by Spruss et al.
have reported that in livers of fructose-fed iNOS−/− mice, lipid
peroxidation, phosphorylated IκB, NF-κB activity and TNF-α expres-
sion were not increased; these findings suggest that iNOS may be
involved in mediating TLR-4-dependent effects on fructose-induced
steatosis [68,78].

Several studies have proposed that fructose and fructose metab-
olites act as endogenous toxins [87–90]. A study group in Canada
reported that the serum level of methylglyoxal, a glycolytic
metabolite, is increased in fructose-fed rats [87,88]. Hyogo et al.
found that serum levels of advanced glycation end products, which
are formed from the fructose metabolite glyceraldehyde, were
significantly elevated in NASH patients [89]. Hepatocytes are very
resistant to H2O2, largely because of their high activities of catalase,
glutathione (GSH), GSH peroxidase and GSH reductase. However, as
little as 10 μM glyoxal was sufficient to increase hepatocyte
susceptibility to noncytotoxic concentrations of H2O2. Cytotoxicities
of fructose and glyoxal, a fructose metabolite, were increased about
100-fold and 200-fold, respectively, by noncytotoxic doses of H2O2

[87,88,90]. The major ROS sources in a cell are the mitochondria,
because electrons passing through the electron transport chain can
leak and reduce oxygen. Cytotoxicity was preceded by ROS and H2O2

formation, and the mitochondrial membrane potential was inhibited
before cytotoxicity occurred; thus, the cytotoxic mechanism is likely
oxidative stress, suggesting that mitochondrial toxicity can cause ROS
formation [88]. On the other hand, cytotoxicity was prevented by
deferoxamine, a ferric chelator, and by hydroxyl radical scavengers.
Furthermore, fructose/ H2O2 cytotoxicity was further increased by
adding trace amounts of ferric or cupric salts. These results suggest
that hydroxyl radicals formed by the Fenton reaction [91] oxidized
fructose to endogenous toxins, which contributed to the cytotoxic
mechanism [92].

4. Conclusion

Fructose has been used as a major caloric sweetener over the
past three decades, during which time the prevalence of obesity
has increased. A growing body of evidence suggests that fructose in
the diet induces NAFLD. Because NAFLD may progress to cirrhosis
with subsequent liver failure and increased risk for hepatocellular
carcinoma, early intervention is essential. In 2009, the American
Heart Association recommended that dietary intake of added
sugars be reduced by more than half [93]. Although much is
known about hepatic fructose metabolism, the detailed mechanism
of the second hit associated with fructose consumption remains
unclear. Further research is warranted to determine the underlying
mechanisms and possible therapeutic approaches for fructose-
induced fatty liver disease.
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